Unlock 2025 Benchmark data → Access insights to stay ahead in the digital experience race.

Get the Report
skip to content
Loading...
    • Why Product Analytics And what can it do for you?
    • How Heap Works A video guide
    • How Heap Compares Heap vs. competitors
    • Product Analytics + Digital Experience Analytics A deeper dive
    • The Future of Insights A comic book guide
    Watch a Demo
  • Data Insights

    • Journeys Visual maps of all user flows
    • Sense AI Analytics for everyone
    • Web Analytics Integrate key web metrics
    • Session Replay Complete context with a single click
    • Heatmaps Visualize user behavior instantly
    • Heap Illuminate Data science that pinpoints unknown friction

    Data Analysis

    • Segments User cohorts for actionable insights
    • Dashboards Share insights on critical metrics
    • Charts Analyze everything about your users
    • Playbooks Plug-and-play templates and analyses

    Data Foundation

    • Capture Automatic event tracking and apis
    • Mobile Track and analyze your users across devices
    • Enrichment Add context to your data
    • Integrations Connect bi-directionally to other tools

    Data Management

    • Governance Keep data clean and trusted
    • Security & Privacy Security and compliance made simple
    • Infrastructure How we build for scale
    • Heap Connect Send Heap data directly to your warehouse
  • Solutions

    • Funnel Optimization Improve conversion in user flows
    • Product Adoption Maximize adoption across your site
    • User Behavior Understand what your users do
    • Product Led Growth Manage PLG with data

    Industries

    • SaaS Easily improve acquisition, retention, and expansion
    • Retail and eComm Increase purchases and order value
    • Healthcare Build better digital patient experiences
    • Financial Services Raise share of wallet and LTV

    Heap For Teams

    • Product Teams Optimize product activation, conversion and retention
    • Marketing Teams Optimize acquisition performance and costs
    • Data Teams Optimize behavioral data without code
  • Pricing
  • Support

    • Heap University Video Tutorials
    • Help Center How to use Heap
    • Heap Plays Tactical how-to guides
    • Professional Services

    Resources

    • Down the Funnel Our complete blog and content library
    • Webinars & Events Events and webinar recordings
    • Press News from and about Heap
    • Careers Join us

    Ecosystem

    • Customer Community Join the conversation
    • Partners Technology and Solutions Partners
    • Developers
    • Customers Stories from over 9,000 successful companies
  • Free TrialRequest Demo
  • Log In
  • Free Trial
  • Request Demo
  • Log In

All Blogs

How To Scale Your Data Practices: Startup Edition

Milene Darnis
December 6, 20196 min read
  • Facebook
  • Twitter
  • LinkedIn
Heap

Heap Product Manager Milene Darnis recently gave a talk on how startups can go about scaling their data practices. Here she summarizes her key points and offers some recommendations for startups aiming to align more of their business decisions around data. You can watch her talk (in French!) here, and read a shorter version of these ideas on the efounders Medium page.

—

As a data-engineer-turned-product-manager, I’ve been lucky enough to live on both sides of the data debate. While I’ve spent years promoting the data scientist’s conviction that the right data can answer everything, I’ve also come to appreciate how businesspeople who haven’t spent their lives thinking about data often see it. (In my experience, they’re generally open-minded, and know data is useful, but are often worried if they’re using it properly, and are often unsure how data should fit into their decision-making.)I still believe that most startups tend to under-utilize their data, and recently I’ve spent time thinking about how people and companies can start to ramp up their data practices. At a company like Heap, whose mission is to spread the gospel of data-driven decision-making, it’s not so hard. But for other startups, it takes work to make data an integral part of decisions across the org.In the spirit of helping companies scale their data practices, here are a few key mindsets around data, and some best practices for building a strong relationship with data.

3 key mindsets around scaling data

Mindset #1: Good (and less good) reasons to use data

Data isn’t always the answer. (Gasp!) There are certainly many opportunities for businesses to leverage data. But there are also misguided ones. Situations where data is a good idea include informing roadmap decisions, identifying bugs in your product, and understanding your customers and prospects. Situations where using data won’t result in better outcomes include: justifying decisions that are already made, avoiding customer discussions (particularly with a limited pool of users), and looking for confirmation in vanity metrics.Before embarking on a data journey, it’s worth thinking about how you want to use data to help your business. For many people—particularly those used to making decisions from their gut—a commitment to data means major changes to how their business operates. Be prepared for these changes, particularly the psychological shifts!

Mindset #2: Start small

I see this all the time: companies can’t wait to “start using AI,” but haven’t built up the infrastructure or processes that make an advanced use-case like AI viable for them. Lots of work needs to happen before a data org is mature enough to tackle this kind of project.The good news is that the steps it takes to adopt a major project like AI still offer many benefits to your business. As a first step, work on supplying clean data to business teams: things like MRR, ARR, and other revenue metrics. No, they’re not AI, but it’s nearly impossible to run a successful business without keeping tabs on them. Once you’ve done this, you can start collecting product data to inform the product team’s decisions: roadmaps, new features, and feature improvements.

Knowing what long-term goals you’re shooting for (AI, predictive forecasts, etc.) can make sure your preliminary steps are put together properly.

Once you’ve put these processes in place, you can start consolidating business data sets to generate models for forecasting. And once these data functions are up and running, you’ll be ready to add AI and predictive features.

Mindset #3: Prerequisites for using data

Before launching any major data initiatives, it’s important to establish some baseline standards. First, do you have enough data? Each of the steps above requires you to be collecting a certain amount of data; if you can’t reliably report on ARR, or product users, or sales, or customers, then you know what your immediate tasks should be.Second, what are your goals? These don’t have to be fully fleshed-out, but knowing what long-term goals you’re shooting for (AI, predictive forecasts, etc.) can make sure your preliminary steps are put together properly. Whatever your big goals are, you’ll likely start by implementing reliable systems for collecting, storing, and exploring data. Knowing what these systems will ultimately be used for can guide they way you organize them now.Third, can you afford to hire data talent? This question involves more than budget; if you want to retain talent, you’ll need to offer them learning opportunities and career development.

Best practices for scaling data at your startup

Best practice #1: User segmentation & key metrics

A good first step for getting started with data is to map out key metrics and offer basic user segmentation. (Basically, user segmentation involves dividing your users into groups based on relevant features—job title, actions they typically take in the product, platform, and so on.) Traditionally, user segmentation is done by looking at user actions through two lenses: time-based criteria and action-based criteria. Time-based criteria tell you when a user performed a specific action (i.e. they onboarded this week), while action-based criteria tell you that a user performed that action (i.e. they completed onboarding). Both are important; both can give you actionable information.Another key set of metrics to start with involves those that capture activity at each stage of your customer journey or funnel. For these, I recommend the AARRR framework (also known as Pirate Metrics!). Besides being fun to say, “AARRR” helps you remember the stages of the user journey: awareness, activation, retention, revenue, referral.

Best practice #2: Building your data stack

If you’re a startup with 50-200 employees, you want to keep your data stack simple. I’d recommend starting with product data, using something like, oh, Heap. To this you want to plug in sources for business data: payment data from Stripe, customer information from Salesforce, and commerce information from Shopify. Lastly, you’ll want a simple server-side data solution like MySQL, which can help manage your database.Once you’ve got these in place, you can think about data warehouse options. I recommend cloud solutions like Snowflake or Amazon Redshift. ETL tools like Heap Connect can help aggregate and transfer your data to them. Finally, you’ll need a top layer of tools to explore and analyze this data. Examples here include tools like Looker and Tableau for BI, or Mode and Jupyter if you need a more data science-based approach.

Best practice #3: Hiring for data

Data is a growing field with lots of new job titles. It’s worth having a sense of what skills each title requires, and what each role can bring to your team:

  • Business analysts: Excel is their weapon of choice. Business analysts track business metrics (monthly revenue, operating costs, etc.), tie data back to the business, and provide collateral for investors.

  • Data analysts: Data analysts use SQL to answer more advanced questions, and often help product teams. For instance, a data analyst could help segment users by behavior in the product to help a product manager orient their roadmap.

  • Data scientists: Data scientists are typically more technical, and often come from academia. They are statistics gurus who use their skills to analyze the past and to run experiments and design predictive models aimed at predicting the future.

  • Data engineers: Data engineers are responsible for building and maintaining data infrastructure. They connect different sources of data, model data, and keep data clean for users across the company.

  • Machine Learning engineers: ML engineers typically live more in engineering than statistics, and are responsible for putting into production the predictive models given to them by the data scientists.

Best practice #4: Centralized vs distributed data org

The proliferation of data-based practices across the business world has caused two major changes (at least): it’s raised expectations of data-literacy across all teams, and it’s started to change the ways data teams work. Whereas earlier teams tended to adopt a centralized approach in which data-oriented tasks would be handled by the data team alone, today this structure produces too many bottlenecks. It also deprives teams of the data they need to do their jobs.

As data practices grow, I recommend taking a more distributed approach. Have your data team set up and maintaining your data stack, but make sure the team also makes that stack available to teams across the business, and easy to use by them. Data teams should also partner with other teams on complex projects whose success requires a data analyst or data scientist.

I hope this information proves useful to those of you trying to expand data practices at your startup! For more information, check out Heap

Milene Darnis

Was this helpful?
PreviousNext

Related Stories

See All

  • Creative visualization of AI CoPilot capability
    article

    Heap announces new generative AI CoPilot

    Heap, the leader in product analytics, unveils AI CoPilot’s open beta today.

  • Heap.io
    article

    What’s Next in Experience Analytics?

    What does the future of analytics hold, and what does it mean for you?

  • Heap.io
    article

    Building a Retention Strategy, Part 2: Connecting Activities to Revenue with a Metrics Tree

    If you read one post from this series, it should be this one.

Better insights. Faster.

Request Demo
  • Platform
  • Capture
  • Enrichment
  • Integrations
  • Governance
  • Security & Privacy
  • Infrastructure
  • Heap Illuminate
  • Segments
  • Charts
  • Dashboards
  • Playbooks
  • Use Cases
  • Funnel Optimization
  • Product Adoption
  • User Behavior
  • Product Led Growth
  • Customer 360
  • SaaS
  • Retail and eComm
  • Financial Services
  • Why Heap
  • Why Product Analytics
  • How Heap Works
  • How Heap Compares
  • ROI Calculator
  • The Future of Insights
  • Resources
  • Blog
  • Content Library
  • Events
  • Topics
  • Heap University
  • Community
  • Professional Services
  • Company
  • About
  • Partners
  • Press
  • Careers
  • Customers
  • DEI
  • Support
  • Request Demo
  • Help Center
  • Contact Us
  • Pricing
  • Social
    • Twitter
    • Facebook
    • LinkedIn
    • YouTube

© 2025 Heap Inc. All Rights Reserved.

  • Legal
  • Privacy Policy
  • Status
  • Trust